论文标题
在部分铰接的边界条件下,Biharmonic操作员的积极保留属性结果
A positivity preserving property result for the biharmonic operator under partially hinged boundary conditions
论文作者
论文摘要
众所周知,对于高阶椭圆方程,保存阳性(PPP)可能会失败。与在Dirichlet边界条件下发生的情况形成鲜明对比的是,我们证明PPP在部分铰接的边界条件下为矩形域上的Biharmonic oberator保留,即非负载荷产生正溶液。结果是对相应绿色函数的傅立叶膨胀的良好估计。
It is well known that for higher order elliptic equations the positivity preserving property (PPP) may fail. In striking contrast to what happens under Dirichlet boundary conditions, we prove that the PPP holds for the biharmonic operator on rectangular domains under partially hinged boundary conditions, i.e. nonnegative loads yield positive solutions. The result follows by fine estimates of the Fourier expansion of the corresponding Green function.