论文标题
与退化色散的准式Schrödinger方程的局部适应性
Local well-posedness for a quasilinear Schrödinger equation with degenerate dispersion
论文作者
论文摘要
我们考虑$ \ Mathbb r $上的quasilinearschrödinger方程,当解决方案消失时,分散效果会退化。我们首先证明了本地良好的性能,以实现足够平滑,空间局部的,退化的初始数据。作为聚焦案例中的推论,我们获得了短时间稳定性的结果,可以将能量最小化的紧凑型呼吸器。
We consider a quasilinear Schrödinger equation on $\mathbb R$ for which the dispersive effects degenerate when the solution vanishes. We first prove local well-posedness for sufficiently smooth, spatially localized, degenerate initial data. As a corollary in the focusing case we obtain a short time stability result for the energy-minimizing compact breather.