论文标题
缺氧的非生物宜居室氛围的光化学:新h $ _2 $ o横截面的影响
Photochemistry of Anoxic Abiotic Habitable Planet Atmospheres: Impact of New H$_2$O Cross-Sections
论文作者
论文摘要
我们提出了一项关于用缺氧Co $ _2 $ -n $ _2 $氛围的非生物居住行星光化学的研究。这些世界代表着早期地球,火星和金星,以及类似的系外行星。 h $ _2 $ o光解离并通过产生反应性OH来控制这些世界的大气光化学,这主导了去除大气痕量气体的去除。 H $ _2 $ o的近紫外(nuv; $> 200 $ nm)的吸收横截面在OH生产中扮演着大型角色;这些横截面是在可居住的温度下($ <373 $ k)的迄今为止无法满足的。我们介绍了NUV H $ _2 $ o吸收$ 292 $ k的第一个测量值,并显示出比以前假设的吸收数量级。为了探索这些新横截面的含义,我们采用了光化学模型。我们首先与另外两个人进行对抗,并解决过去的文学分歧。由于这些较高的横截面而导致的OH产量增强导致CO和O $ _2 $的有效重组,相对于过去的预测,通过数量级来抑制,并消除了O $ _2 $作为Solar-Stars周围的生物签名的低量表“假阳性”情景。增强的[OH]增加了与益生元化学相关的表面降雨量,还可能抑制Ch $ _4 $和H $ _2 $;后者取决于对基础行星的埋葬是否被抑制,正如非生物世界所指出的那样。虽然我们专注于$ _2 $ rich Worlds,但我们的结果一般与缺氧行星有关。总体而言,我们的工作通过提供至关重要的新h $ _2 $ o横截面并解决文献中的过去分歧,提高了光化学模型的最先进,并建议检测诸如岩石系外行星大气层的频谱活动痕量气体可能比以前考虑的更具挑战性。
We present a study of the photochemistry of abiotic habitable planets with anoxic CO$_2$-N$_2$ atmospheres. Such worlds are representative of early Earth, Mars and Venus, and analogous exoplanets. H$_2$O photodissociation controls the atmospheric photochemistry of these worlds through production of reactive OH, which dominates the removal of atmospheric trace gases. The near-UV (NUV; $>200$ nm) absorption cross-sections of H$_2$O play an outsized role in OH production; these cross-sections were heretofore unmeasured at habitable temperatures ($<373$ K). We present the first measurements of NUV H$_2$O absorption at $292$ K, and show it to absorb orders of magnitude more than previously assumed. To explore the implications of these new cross-sections, we employ a photochemical model; we first intercompare it with two others and resolve past literature disagreement. The enhanced OH production due to these higher cross-sections leads to efficient recombination of CO and O$_2$, suppressing both by orders of magnitude relative to past predictions and eliminating the low-outgassing "false positive" scenario for O$_2$ as a biosignature around solar-type stars. Enhanced [OH] increases rainout of reductants to the surface, relevant to prebiotic chemistry, and may also suppress CH$_4$ and H$_2$; the latter depends on whether burial of reductants is inhibited on the underlying planet, as is argued for abiotic worlds. While we focus on CO$_2$-rich worlds, our results are relevant to anoxic planets in general. Overall, our work advances the state-of-the-art of photochemical models by providing crucial new H$_2$O cross-sections and resolving past disagreement in the literature, and suggests that detection of spectrally active trace gases like CO in rocky exoplanet atmospheres may be more challenging than previously considered.