论文标题

测试时间适应性的神经网络,用于强大的医学图像分割

Test-Time Adaptable Neural Networks for Robust Medical Image Segmentation

论文作者

Karani, Neerav, Erdil, Ertunc, Chaitanya, Krishna, Konukoglu, Ender

论文摘要

当培训数据集代表预期在测试时会遇到的变化时,卷积神经网络(CNN)在监督学习问题方面非常有效。在医学图像细分中,当培训和测试图像之间的获取细节(例如扫描仪模型或协议)之间存在不匹配时,就会违反此前提。在这种情况下,CNNS的出色性能降解在文献中有充分的记录。为了解决此问题,我们将分割CNN设计为两个子网络的串联:一个相对较浅的图像归一化CNN,然后是将归一化图像段的深CNN。我们使用培训数据集训练这两个子网络,这些数据集由特定扫描仪和协议设置的带注释的图像组成。现在,在测试时间,我们适应\ emph {每个测试图像}的图像归一化子网络,并在预测的分割标签上具有隐式先验的指导。我们采用了经过独立训练的Denoising自动编码器(DAE),以对合理的解剖分段标签进行这种隐含的先验建模。我们验证了三种解剖学的多中心磁共振成像数据集的拟议思想:大脑,心脏和前列腺。提出的测试时间适应始终提供性能改进,证明了方法的希望和普遍性。对于深CNN的架构而言,第二个子网络可与任何分割网络一起使用,以提高成像扫描仪和协议的变化的鲁棒性。我们的代码可在:\ url {https://github.com/neerakara/test time-aptable-neural-networks-for-domain-generalization}中获得。

Convolutional Neural Networks (CNNs) work very well for supervised learning problems when the training dataset is representative of the variations expected to be encountered at test time. In medical image segmentation, this premise is violated when there is a mismatch between training and test images in terms of their acquisition details, such as the scanner model or the protocol. Remarkable performance degradation of CNNs in this scenario is well documented in the literature. To address this problem, we design the segmentation CNN as a concatenation of two sub-networks: a relatively shallow image normalization CNN, followed by a deep CNN that segments the normalized image. We train both these sub-networks using a training dataset, consisting of annotated images from a particular scanner and protocol setting. Now, at test time, we adapt the image normalization sub-network for \emph{each test image}, guided by an implicit prior on the predicted segmentation labels. We employ an independently trained denoising autoencoder (DAE) in order to model such an implicit prior on plausible anatomical segmentation labels. We validate the proposed idea on multi-center Magnetic Resonance imaging datasets of three anatomies: brain, heart and prostate. The proposed test-time adaptation consistently provides performance improvement, demonstrating the promise and generality of the approach. Being agnostic to the architecture of the deep CNN, the second sub-network, the proposed design can be utilized with any segmentation network to increase robustness to variations in imaging scanners and protocols. Our code is available at: \url{https://github.com/neerakara/test-time-adaptable-neural-networks-for-domain-generalization}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源