论文标题
Prune2Edge:IIT中深层学习的多相修剪管道
Prune2Edge: A Multi-Phase Pruning Pipelines to Deep Ensemble Learning in IIoT
论文作者
论文摘要
最近,随着物联网设备的扩散,制造系统中的计算节点IIT(工业互动)和5G网络的午餐,将有数百万个连接的设备产生大量数据。在这样的环境中,控制系统需要足够智能,以处理大量数据以在实时过程中检测缺陷。在这种需求的驱动下,必须将诸如深度学习之类的人工智能模型部署到IIT系统中。但是,学习和使用深度学习模型在计算上很昂贵,因此具有有限计算能力的物联网设备无法运行此类模型。为了解决这个问题,Edge Intelligence已成为用于在Edge设备上运行人工智能模型的新范式。尽管在这一领域提出了大量的研究,但该研究仍处于早期阶段。在本文中,我们提出了一种新型的基于边缘的多相修剪管道,以在IIOT设备上进行集合学习。在第一阶段,我们生成了各种修剪模型的集合,然后应用整数定量,接下来,我们使用基于聚类的技术来修剪生成的合奏。最后,我们从每个生成的群集中选择最佳代表,以部署到分布式的物联网环境中。在CIFAR-100和CIFAR-10上,我们提出的方法能够超越基线模型的可预测性水平(最高7%),更重要的是,生成的学习者的尺寸很小(模型尺寸减少了90%),从而最大程度地减少了所需的计算能力,以便对资源构成设备的关注提出选择。
Most recently, with the proliferation of IoT devices, computational nodes in manufacturing systems IIoT(Industrial-Internet-of-things) and the lunch of 5G networks, there will be millions of connected devices generating a massive amount of data. In such an environment, the controlling systems need to be intelligent enough to deal with a vast amount of data to detect defects in a real-time process. Driven by such a need, artificial intelligence models such as deep learning have to be deployed into IIoT systems. However, learning and using deep learning models are computationally expensive, so an IoT device with limited computational power could not run such models. To tackle this issue, edge intelligence had emerged as a new paradigm towards running Artificial Intelligence models on edge devices. Although a considerable amount of studies have been proposed in this area, the research is still in the early stages. In this paper, we propose a novel edge-based multi-phase pruning pipelines to ensemble learning on IIoT devices. In the first phase, we generate a diverse ensemble of pruned models, then we apply integer quantisation, next we prune the generated ensemble using a clustering-based technique. Finally, we choose the best representative from each generated cluster to be deployed to a distributed IoT environment. On CIFAR-100 and CIFAR-10, our proposed approach was able to outperform the predictability levels of a baseline model (up to 7%), more importantly, the generated learners have small sizes (up to 90% reduction in the model size) that minimise the required computational capabilities to make an inference on the resource-constraint devices.