论文标题

Sachdev-ye-Kitaev模型纯状态的纠缠熵及其淬灭动态

Entanglement Entropy and its Quench Dynamics for Pure States of the Sachdev-Ye-Kitaev model

论文作者

Zhang, Pengfei

论文摘要

Sachdev-Ye-Kitaev(SYK)是具有非弗米液体行为和最大混乱的具体溶解模型。在这项工作中,我们研究了Kourkoulou-Maldacena表示Syk模型子系统的纠缠Rényi熵。我们使用路径综合方法,并以$ n $限制以鞍点的近似值。当调整$ q = 4 $ case的子系统大小时,我们发现存在一阶过渡,而$ q = 2 $ case则存在。我们进一步研究了这种状态在实时演变下的纠缠动态,用于非相互作用,弱相互作用和强烈相互作用的SYK(类似)模型。

Sachdev-Ye-Kitaev (SYK) is a concrete solvable model with non-Fermi liquid behavior and maximal chaos. In this work, we study the entanglement Rényi entropy for the subsystems of the SYK model in the Kourkoulou-Maldacena states. We use the path-integral approach and take the saddle point approximation in the large-$N$ limit. We find a first-order transition exist when tuning the subsystem size for the $q=4$ case, while it is absent for the $q=2$ case. We further study the entanglement dynamics for such states under the real-time evolution for noninteracting, weakly interacting and strongly interacting SYK(-like) models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源