论文标题

询问2.0的投诉驱动培训数据调试

Complaint-driven Training Data Debugging for Query 2.0

论文作者

Wu, Weiyuan, Flokas, Lampros, Wu, Eugene, Wang, Jiannan

论文摘要

随着机器学习的需求(ML)在所有行业中都迅速增加,商业数据库提供商在支持“查询2.0”的情况下引起了极大的兴趣,这将模型推断集成到SQL查询中。调试查询2.0非常具有挑战性,因为意外的查询结果可能是由训练数据中的错误引起的(例如错误的标签,损坏的功能)。作为回应,我们建议降雨,这是一个以投诉驱动的培训数据调试系统。 RAIN允许用户对查询的中间或最终产出指定投诉,并旨在返回最低限度的培训示例,以便将其删除,将解决这些投诉。据我们所知,我们是第一个研究这个问题的人。幼稚的解决方案需要重新培训指数数量的ML模型。我们根据影响功能提出了两种新型的启发式方法,这些方法都需要线性重新训练步骤。我们对两种方法提供了深入的分析和经验分析,并进行了广泛的实验,以使用四个现实世界数据集评估其有效性。结果表明,雨水在所有基线中达到了最高的回忆@K,而仍然可以交互返回结果。

As the need for machine learning (ML) increases rapidly across all industry sectors, there is a significant interest among commercial database providers to support "Query 2.0", which integrates model inference into SQL queries. Debugging Query 2.0 is very challenging since an unexpected query result may be caused by the bugs in training data (e.g., wrong labels, corrupted features). In response, we propose Rain, a complaint-driven training data debugging system. Rain allows users to specify complaints over the query's intermediate or final output, and aims to return a minimum set of training examples so that if they were removed, the complaints would be resolved. To the best of our knowledge, we are the first to study this problem. A naive solution requires retraining an exponential number of ML models. We propose two novel heuristic approaches based on influence functions which both require linear retraining steps. We provide an in-depth analytical and empirical analysis of the two approaches and conduct extensive experiments to evaluate their effectiveness using four real-world datasets. Results show that Rain achieves the highest recall@k among all the baselines while still returns results interactively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源