论文标题
开发统一的高阶非液压多态有限有限体积动力学核心:通用曲线层坐标系中通量形式的辅导方程的推导
Development of a unified high-order nonhydrostatic multi-moment constrained finite volume dynamical core: derivation of flux-form governing equations in the general curvilinear coordinate system
论文作者
论文摘要
在手稿中,我们在一般的曲线坐标系中得出了通量形式的大气控制方程,该方程是由高阶非静态多力的约束有限体积(MCV)动力芯使用的,并给定浅水层近似值中的明显配方。通常,与笛卡尔坐标不同,曲线坐标X^i(i = 1,2,3),基本矢量不是沿幅度或方向的常数。遵循诸如基础向量,矢量和张量等表示的表示,在一般曲线坐标中,我们可以获得基本向量,梯度和散射操作员等的差异关系,这些关系是大气中的组分等式的组成部分。然后,我们将它们应用于两个特定的曲线坐标系:在高阶非液压MCV动力核中采用的球形极性和立方体坐标。通过切换诸如度量张量(协变和违反)之类的几何形式,转化的雅各布式,在球形极性和沿轴球形坐标之间的第二类的基督佛尔符号,可以轻松地实现特定坐标系统中的磁通形式的控制方程。当然,可以回收笛卡尔坐标。指出,由于坐标的正交特性,球形极性系统和笛卡尔坐标等投影度量张量变得很简单。
In the manuscript we have derived the flux-form atmospheric governing equations in the general curvilinear coordinate system which is used by a high-order nonhydrostatic multi-moment constrained finite volume (MCV) dynamical core, and given the explicit formulations in the shallow-atmosphere approximation. In general curvilinear coordinate x^i(i = 1,2,3), unlike the Cartesian coordinate, the base vectors are not constants either in magnitude or direction. Following the representations such as base vectors, vector and tensor and so on in general curvilinear coordinate, we can obtain the differential relations of base vectors, the gradient and divergence operator etc. which are the component parts of the atmospheric governing equation. Then we apply them in the two specific curvilinear coordinate system: the spherical polar and cubed-sphere coordinates that are adopted in high-order nonhydrostatic MCV dynamical core. By switching the geometrics such as the metric tensors (covariant and contravariant), Jacobian of the transformation, the Christoffel symbol of the second kind between the spherical polar and cubed-sphere coordinates, the resulting flux-form governing equations in the specific coordinate system can be easily achieved. Of course, the Cartesian coordinate can be recovered. Noted that the projection metric tensors like spherical polar system and Cartesian coordinate become simple due to orthogonal properties of coordinate.