论文标题

低质量气态暗物质光环中的详细结构和星系形成的发作

The detailed structure and the onset of galaxy formation in low-mass gaseous dark matter haloes

论文作者

Benitez-Llambay, Alejandro, Frenk, Carlos

论文摘要

我们提出了一个模型,用于在早期宇宙中氢化之前和之后的第一个星系形成。在该模型中,星系形成只能在质量超过红移依赖性的临界值的暗物质光环中发生,在恢复之前,它与原子氢冷却变得有效的质量相等(在最简单的情况下),并且在恢复后,在恢复后,与上面的质量相等,在上面的质量等于,在质量平衡中不能保持气体平衡。我们将光环占用分数(HOF)定义为光晕的比例,该光环占据了发光星系作为光环质量的函数。 HOF是通过临界质量演变与光环的组装历史之间的相互作用来确定的,并取决于三个因素:电离之前星系形成的最小光环质量,电离的红移和(进化)外部光热率的强度。我们的基准模型预测,在当今的光环质量下,星系质量函数的截止值,$ m_ {200} \ sim 3 \ times 10^{8} m _ {\ odot} $; 100 \%职业在$ m_ {200}> 5 \ times 10^9 m _ {\ odot} $;以及当今质量的无星气息$ 10^{6} \ Lessim m_ {200} / m _ {\ odot} \ Lessim 5 \ times 10^{9} $,其中气体具有热量平衡,具有紫外线辐射的静电量和水平静脉内的静态势和水位静脉内的势力。 HOF = 0和HOF = 1之间的过渡反映了光环质量生长的随机性质。我们探索这些特征质量如何随模型假设和参数值而变化。我们模型的结果与星系形成的宇宙流体动力学模拟非常吻合。

We present a model for the formation of the first galaxies before and after the reionization of hydrogen in the early universe. In this model, galaxy formation can only take place in dark matter haloes whose mass exceeds a redshift-dependent critical value, which, before reionization, is equal (in the simplest case) to the mass at which atomic hydrogen cooling becomes effective and, after reionization, is equal to the mass above which gas cannot remain in hydrostatic equilibrium. We define the Halo Occupation Fraction (HOF) as the fraction of haloes that host a luminous galaxy as a function of halo mass. The HOF is established by the interplay between the evolution of the critical mass and the assembly history of haloes and depends on three factors: the minimum halo mass for galaxy formation before reionization, the redshift of reionization, and the intensity of the (evolving) external photoheating rate. Our fiducial model predicts a cutoff in the galaxy mass function at a present-day halo mass, $M_{200} \sim 3\times 10^{8} M_{\odot}$; 100\% occupation at $M_{200} > 5\times 10^9 M_{\odot}$; and a population of starless gaseous haloes of present-day mass in the range $10^{6} \lesssim M_{200} / M_{\odot}\lesssim 5\times 10^{9}$, in which the gas is in thermal equilibrium with the ultraviolet background radiation and in hydrostatic equilibrium in the gravitational potential of the halo. The transition between HOF = 0 and HOF=1 reflects the stochastic nature of halo mass growth. We explore how these characteristic masses vary with model assumptions and parameter values. The results of our model are in excellent agreement with cosmological hydrodynamic simulations of galaxy formation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源