论文标题

可检测正常胸部X射线射线照相的强大网络体系结构

A robust network architecture to detect normal chest X-ray radiographs

论文作者

Wong, Ken C. L., Moradi, Mehdi, Wu, Joy, Pillai, Anup, Sharma, Arjun, Gur, Yaniv, Ahmad, Hassan, Chowdary, Minnekanti Sunil, J, Chiranjeevi, Polaka, Kiran Kumar Reddy, Wunnava, Venkateswar, Reddy, DC, Syeda-Mahmood, Tanveer

论文摘要

我们提出了一种新型的深神经网络结构,用于在胸部X射线图像中进行正常检测。该架构将问题视为细粒二进制分类,其中正常情况被很好地定义为一类,同时将所有其他案例留在广泛的异常类别中。它采用了几个组件,可以允许概括并防止在人群之间过度拟合。该模型在额叶X射线图像的大型公共数据集上进行了训练和验证。然后,使用三个放射科医生共识以进行地面真相标记的三个放射科医生共识,对不同患者人口统计的临床机构进行独立测试。在1271张图像上测试时,该模型在ROC曲线下提供了一个区域。我们可以从工作流中自动删除近三分之一的无病胸部X射线筛查图像,而无需引入任何假否定性(对疾病的100%敏感),从而提高了将来医院中放射线工作流加速的潜力。

We propose a novel deep neural network architecture for normalcy detection in chest X-ray images. This architecture treats the problem as fine-grained binary classification in which the normal cases are well-defined as a class while leaving all other cases in the broad class of abnormal. It employs several components that allow generalization and prevent overfitting across demographics. The model is trained and validated on a large public dataset of frontal chest X-ray images. It is then tested independently on images from a clinical institution of differing patient demographics using a three radiologist consensus for ground truth labeling. The model provides an area under ROC curve of 0.96 when tested on 1271 images. We can automatically remove nearly a third of disease-free chest X-ray screening images from the workflow, without introducing any false negatives (100% sensitivity to disease) thus raising the potential of expediting radiology workflows in hospitals in future.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源