论文标题

基于强度的神经网络的成对重复均值场极限

The Pair-Replica-Mean-Field Limit for Intensity-based Neural Networks

论文作者

Baccelli, François, Taillefumier, Thibaud

论文摘要

已经提出了复制均值模型,以通过多重和诱导方法破译神经网络的活性。在这种方法中,人们认为,限制了由无限多个复制品组成的网络,其基本神经结构与感兴趣的网络相同,但以随机方式交换尖峰。关键点是,这些复制品均值网络是可拖动版本,可保留有限的感兴趣结构的重要特征。迄今为止,已经讨论了一阶模型的复制框架,从而基本复制成分是具有独立泊松输入的单个神经元。在这里,我们扩展了此复制框架,以允许基本复制成分是复合对象,即成对的神经元。由于它们包括成对的相互作用,因此这些成对更换模型在其固定动力学中表现出非平凡的依赖性,这无法通过一阶复制模型捕获。我们的贡献是两倍:$(i)$我们通过分析表征具有独立泊松输入的一对基于强度的神经元的固定动力学。该分析涉及减少与弗雷霍尔姆积分方程系统的二维传输方程相关的边界值问题 - 独立利益的结果。 $(ii)$我们分析确定某些复制限制的完整网络动态的一致性方程组。这些限制是复制成分的单个神经元或成对神经元的限制,它们构成了感兴趣网络的分区。通过计算神经元对的输入/输出传输函数以及计算某些成对主导的网络动力学的相关结构,可以在数值上验证这两种分析。

Replica-mean-field models have been proposed to decipher the activity of neural networks via a multiply-and-conquer approach. In this approach, one considers limit networks made of infinitely many replicas with the same basic neural structure as that of the network of interest, but exchanging spikes in a randomized manner. The key point is that these replica-mean-field networks are tractable versions that retain important features of the finite structure of interest. To date, the replica framework has been discussed for first-order models, whereby elementary replica constituents are single neurons with independent Poisson inputs. Here, we extend this replica framework to allow elementary replica constituents to be composite objects, namely, pairs of neurons. As they include pairwise interactions, these pair-replica models exhibit non-trivial dependencies in their stationary dynamics, which cannot be captured by first-order replica models. Our contributions are two-fold: $(i)$ We analytically characterize the stationary dynamics of a pair of intensity-based neurons with independent Poisson input. This analysis involves the reduction of a boundary-value problem related to a two-dimensional transport equation to a system of Fredholm integral equations---a result of independent interest. $(ii)$ We analyze the set of consistency equations determining the full network dynamics of certain replica limits. These limits are those for which replica constituents, be they single neurons or pairs of neurons, form a partition of the network of interest. Both analyses are numerically validated by computing input/output transfer functions for neuronal pairs and by computing the correlation structure of certain pair-dominated network dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源