论文标题

量子革兰氏 - schmidt流程及其在有效的量子算法的有效状态读取中的应用

Quantum Gram-Schmidt Processes and Their Application to Efficient State Read-out for Quantum Algorithms

论文作者

Zhang, Kaining, Hsieh, Min-Hsiu, Liu, Liu, Tao, Dacheng

论文摘要

许多声称对其经典对应物加速的量子算法仅生成量子状态作为解决方案而不是最终的经典描述。在大多数情况下,将量子状态解码为经典向量的额外步骤通常会破坏量子优势,因为所有现有的层析成像方法都需要相对于状态维度多项式的运行时。在这项工作中,我们提出了一种有效的读出协议,该协议得出生成状态的经典向量形式,因此它将获得这些量子算法的端到端优势。我们的协议适合这样一种情况:输出状态位于输入矩阵的行空间中,该级别$ r $,该空间存储在量子随机访问存储器中。用$ \ ell^2 $ norm在$ε$中解码状态的量子资源需要$ \ poly(r,1/ε)$副本的副本和$ \ poly(r,κ^r,1/ε)$ queries到输入oracles,在$κ$的情况下是输入矩阵的条件数量。通过读取协议,我们完全表征了量子线性方程求解器和量子奇异值分解的端到端资源。我们的技术工具之一是一种有效的量子算法,用于执行革兰氏 - schmidt正交程序,我们认为这将引起独立的兴趣。

Many quantum algorithms that claim speed-up over their classical counterparts only generate quantum states as solutions instead of their final classical description. The additional step to decode quantum states into classical vectors normally will destroy the quantum advantage in most scenarios because all existing tomographic methods require runtime that is polynomial with respect to the state dimension. In this work, we present an efficient read-out protocol that yields the classical vector form of the generated state, so it will achieve the end-to-end advantage for those quantum algorithms. Our protocol suits the case that the output state lies in the row space of the input matrix, of rank $r$, that is stored in the quantum random access memory. The quantum resources for decoding the state in $\ell^2$ norm with $ε$ error require $\poly(r,1/ε)$ copies of the output state and $\poly(r, κ^r,1/ε)$ queries to the input oracles, where $κ$ is the condition number of the input matrix. With our read-out protocol, we completely characterise the end-to-end resources for quantum linear equation solvers and quantum singular value decomposition. One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure, which we believe, will be of independent interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源