论文标题

空间6:多传感器所有天气映射数据集

SpaceNet 6: Multi-Sensor All Weather Mapping Dataset

论文作者

Shermeyer, Jacob, Hogan, Daniel, Brown, Jason, Van Etten, Adam, Weir, Nicholas, Pacifici, Fabio, Haensch, Ronny, Bastidas, Alexei, Soenen, Scott, Bacastow, Todd, Lewis, Ryan

论文摘要

在遥感领域内,存在各种各样的采集方式,每种方式都有自己独特的优势和劣势。但是,当前大多数文献和开放数据集仅处理高空间分辨率下的不同检测和分割任务的电光(光学)数据。光学数据通常是地​​理空间应用的首选选择,但是需要清晰的天空和很少的云盖才能正常工作。相反,合成的孔径雷达(SAR)传感器具有穿透云并在整个天气,白天和夜间条件下收集的独特能力。因此,当天气和云覆盖能够阻碍传统的光学传感器时,SAR数据在寻求灾难反应方面特别有价值。尽管有所有这些优点,但研究人员几乎没有开放数据可以探索SAR在此类应用中的有效性,尤其是在很高的空间分辨率下,即<1m的地面样品距离(GSD)。 为了解决这个问题,我们提供了一个开放的多传感器所有天气映射(MSAW)数据集和挑战,该数据集和挑战具有两种收集方式(SAR和光学)。数据集和挑战专注于使用这些数据源的组合来映射和构建足迹提取。 MSAW在多个重叠的收集中覆盖120 km^2,并带有48,000多个独特的建筑足迹标签,从而为多模式数据提供了映射算法的创建和评估。我们提出了一个基线和基准测试,用于使用SAR数据构建足迹提取占地面积,并发现对光学数据进行了预训练的最新分割模型,然后在SAR上进行了培训(F1分数0.21)优于单独培训的SAR数据(F1得分为0.135)。

Within the remote sensing domain, a diverse set of acquisition modalities exist, each with their own unique strengths and weaknesses. Yet, most of the current literature and open datasets only deal with electro-optical (optical) data for different detection and segmentation tasks at high spatial resolutions. optical data is often the preferred choice for geospatial applications, but requires clear skies and little cloud cover to work well. Conversely, Synthetic Aperture Radar (SAR) sensors have the unique capability to penetrate clouds and collect during all weather, day and night conditions. Consequently, SAR data are particularly valuable in the quest to aid disaster response, when weather and cloud cover can obstruct traditional optical sensors. Despite all of these advantages, there is little open data available to researchers to explore the effectiveness of SAR for such applications, particularly at very-high spatial resolutions, i.e. <1m Ground Sample Distance (GSD). To address this problem, we present an open Multi-Sensor All Weather Mapping (MSAW) dataset and challenge, which features two collection modalities (both SAR and optical). The dataset and challenge focus on mapping and building footprint extraction using a combination of these data sources. MSAW covers 120 km^2 over multiple overlapping collects and is annotated with over 48,000 unique building footprints labels, enabling the creation and evaluation of mapping algorithms for multi-modal data. We present a baseline and benchmark for building footprint extraction with SAR data and find that state-of-the-art segmentation models pre-trained on optical data, and then trained on SAR (F1 score of 0.21) outperform those trained on SAR data alone (F1 score of 0.135).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源