论文标题
组合通过顺序组装产生组合形状
Combinatorial 3D Shape Generation via Sequential Assembly
论文作者
论文摘要
带有几何原语的顺序组装引起了机器人和3D视觉的关注,因为它产生了构建目标形状的实用蓝图。但是,由于其组合性质,一种贪婪的方法缺乏产生一系列体积原始素的序列。为了减轻大量可行组合引起的这种后果,我们提出了一个组合3D形状生成框架。所提出的框架反映了现实生活中人类产生过程的一个重要方面 - 我们通常通过顺序组装单位原始图,并具有几何约束来创建3D形状。为了找到有关组合评估的所需组合,我们采用了贝叶斯优化,该优化能够利用和探索受当前原始位置约束的可行区域。评估功能同时在重力和外力方面传达了全球结构指导和稳定性。实验结果表明,我们的方法成功地生成了组合3D形状并模拟了更现实的生成过程。我们还引入了一个用于组合3D形状生成的新数据集。所有代码均可在\ url {https://github.com/postech-cvlab/combinatorial-3d-shape-generation}中获得。
Sequential assembly with geometric primitives has drawn attention in robotics and 3D vision since it yields a practical blueprint to construct a target shape. However, due to its combinatorial property, a greedy method falls short of generating a sequence of volumetric primitives. To alleviate this consequence induced by a huge number of feasible combinations, we propose a combinatorial 3D shape generation framework. The proposed framework reflects an important aspect of human generation processes in real life -- we often create a 3D shape by sequentially assembling unit primitives with geometric constraints. To find the desired combination regarding combination evaluations, we adopt Bayesian optimization, which is able to exploit and explore efficiently the feasible regions constrained by the current primitive placements. An evaluation function conveys global structure guidance for an assembly process and stability in terms of gravity and external forces simultaneously. Experimental results demonstrate that our method successfully generates combinatorial 3D shapes and simulates more realistic generation processes. We also introduce a new dataset for combinatorial 3D shape generation. All the codes are available at \url{https://github.com/POSTECH-CVLab/Combinatorial-3D-Shape-Generation}.