论文标题

筛子:用于数据库管理系统可扩展访问控制的中间件方法

Sieve: A Middleware Approach to Scalable Access Control for Database Management Systems

论文作者

Pappachan, Primal, Yus, Roberto, Mehrotra, Sharad, Freytag, Johann-Christoph

论文摘要

当前在数据库管理系统(DBMS)中强制执行FGAC的方法不会在策略数量按数千个顺序的情况下进行扩展。本文在新兴的智能空间的背景下确定了这样的用例,其中可能要求系统(例如欧洲的GDPR和加利福尼亚的CCPA),以授权用户指定谁可以访问其数据以及目的。我们提出了在现有数据库系统中实现FGAC的一种分层方法,该方法利用了各种功能,例如UDFS,索引使用提示,查询说明;扩展到大量政策。给定查询,Sieve利用其上下文来过滤需要检查的策略。 Sieve还会产生守卫表达式,通过分组策略并通过利用数据库索引来节省评估成本并削减读取成本。我们在两个DBM和两个不同数据集上的实验结果表明,筛分到大型数据集和大型策略语料库,从而支持包括新兴智能环境在内的应用程序中的实时访问。

Current approaches of enforcing FGAC in Database Management Systems (DBMS) do not scale in scenarios when the number of policies are in the order of thousands. This paper identifies such a use case in the context of emerging smart spaces wherein systems may be required by legislation, such as Europe's GDPR and California's CCPA, to empower users to specify who may have access to their data and for what purposes. We present Sieve, a layered approach of implementing FGAC in existing database systems, that exploits a variety of it's features such as UDFs, index usage hints, query explain; to scale to large number of policies. Given a query, Sieve exploits it's context to filter the policies that need to be checked. Sieve also generates guarded expressions that saves on evaluation cost by grouping the policies and cuts the read cost by exploiting database indices. Our experimental results, on two DBMS and two different datasets, show that Sieve scales to large data sets and to large policy corpus thus supporting real-time access in applications including emerging smart environments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源