论文标题

特征向量延续的收敛

Convergence of Eigenvector Continuation

论文作者

Sarkar, Avik, Lee, Dean

论文摘要

特征向量延续是一种计算方法,它可以找到具有一个或多个控制参数的汉密尔顿矩阵的极端特征值和特征向量。它通过投影到对应于控制参数的选定训练值的特征向量的子空间中来做到这一点。事实证明,该方法对于插值和推断特征向量非常有效且准确。但是,对于该方法的收敛方式及其快速收敛属性几乎一无所知。在这封信中,我们介绍了特征向量延续的收敛性的第一个研究。为了执行数学分析,我们介绍了我们称为向量延续的特征向量延续的新变体。我们首先证明特征向量的延续和矢量延续具有相同的收敛属性,然后分析矢量延续的收敛性。我们的分析表明,通常,特征向量延续比扰动理论更快。更快的收敛是通过消除我们称为差折叠的现象,即扰动理论中不同阶的非正交矢量之间的干扰。从我们的分析中,我们可以预测特征向量延续如何在扰动理论的收敛性半径内部和外部融合。虽然特征向量的延续是一种非扰动方法,但我们表明其收敛速率可以从特征向量的功率序列扩展中得出。我们的结果还产生了对扰动理论中差异性质的新见解。

Eigenvector continuation is a computational method that finds the extremal eigenvalues and eigenvectors of a Hamiltonian matrix with one or more control parameters. It does this by projection onto a subspace of eigenvectors corresponding to selected training values of the control parameters. The method has proven to be very efficient and accurate for interpolating and extrapolating eigenvectors. However, almost nothing is known about how the method converges, and its rapid convergence properties have remained mysterious. In this letter we present the first study of the convergence of eigenvector continuation. In order to perform the mathematical analysis, we introduce a new variant of eigenvector continuation that we call vector continuation. We first prove that eigenvector continuation and vector continuation have identical convergence properties and then analyze the convergence of vector continuation. Our analysis shows that, in general, eigenvector continuation converges more rapidly than perturbation theory. The faster convergence is achieved by eliminating a phenomenon that we call differential folding, the interference between non-orthogonal vectors appearing at different orders in perturbation theory. From our analysis we can predict how eigenvector continuation converges both inside and outside the radius of convergence of perturbation theory. While eigenvector continuation is a non-perturbative method, we show that its rate of convergence can be deduced from power series expansions of the eigenvectors. Our results also yield new insights into the nature of divergences in perturbation theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源