论文标题

规范的多项式范德沃登的定理

A Canonical Polynomial Van der Waerden's Theorem

论文作者

Girão, António

论文摘要

我们证明了一个规范的多项式Van der Waerden的定理。更确切地说,我们显示以下内容。令$ \ {p_1(x),\ ldots,p_k(x)\} $为一组多项式,以使$ p_i(x)\ in \ mathbb {z} [x] $ and $ p_i(0)= 0 $,对于每个$ i \ in \ in \ in \ in \ {1,\ ldots,k \ ldots,k \} $。然后,在$ \ mathbb {z} $的任何着色中,存在$ a,d \ in \ mathbb {z} $,使得$ \ {a+p_1(d),\ ldots,a+p_ {k}(k}(d)\} $单色或彩虹或彩虹集。

We prove a canonical polynomial Van der Waerden's Theorem. More precisely, we show the following. Let $\{p_1(x),\ldots,p_k(x)\}$ be a set of polynomials such that $p_i(x)\in \mathbb{Z}[x]$ and $p_i(0)=0$, for every $i\in \{1,\ldots,k\}$. Then, in any colouring of $\mathbb{Z}$, there exist $a,d\in \mathbb{Z}$ such that $\{a+p_1(d),\ldots,a+p_{k}(d)\}$ forms either a monochromatic or a rainbow set.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源