论文标题
群集壳模型中的离散对称性
Discrete symmetries in the cluster shell model
论文作者
论文摘要
在集群壳模型的框架中讨论了离散(或点组)对称性的作用,该框架描述了群集电位变形场中单粒子水平的分裂。我们讨论了根据双点d'(3H)和t'(d)的不可还原表示的三角形和四面体构型的分类,并如何确定给定特征的离散对称性。最后,我们为这些几何构型中的每一种都得出Coriolis耦合。
The role of discrete (or point-group) symmetries is discussed in the framework of the Cluster Shell Model which describes the splitting of single-particle levels in the deformed field of cluster potentials. We discuss the classification of the eigenstates for the cases of a triangular and tetrahedral configuration of alpha-particles in terms of the irreducible representations of the double point groups D'(3h) and T'(d), respectively, and show how the discrete symmetry of a given eigenstate can be determined. Finally, we derive the Coriolis coupling for each one of these geometrical configurations.