论文标题
QCD的Hermitian Wilson-Dirac操作员的多族加速征收征收的特征。
A multigrid accelerated eigensolver for the Hermitian Wilson-Dirac operator in lattice QCD
论文作者
论文摘要
Hermitian Wilson-Dirac操作员的特征值在评估全能传播器时,在几个晶格QCD模拟中特别感兴趣,例如,用于降噪。在本文中,我们提出了一个戴维森型的eigensolver,它利用了Hermitian Wilson-Dirac操作员$ Q $的结构属性来计算与小特征值相对应的该操作员的特征。主要思想是利用(外部)eigensolver及其(内部)迭代方案之间的协同作用,该方案解决了移动的线性系统。这是通过将Multigrid DD- $α$ AMG算法调整为涉及Hermitian Wilson-Dirac运营商的移动系统的求解器来实现的。我们证明,正如我们对当地一致性的研究所示,使用广义戴维森方法的特征向量信息更新粗网格操作员对于在计算许多特征台的过程中获得良好的性能至关重要。我们将我们的方法与数值测试中常用的软件包装和PIRME进行了比较,在数值测试中,我们能够实现重大的改进,而相对于特征值的数量,加速最多的数量级和接近线性的缩放。为了进行说明,我们将$ Q $的小特征值在$ 64 \ times 32^3 $晶格上的分布与无限量限制的银行施用者关系所预测的分布。
Eigenvalues of the Hermitian Wilson-Dirac operator are of special interest in several lattice QCD simulations, e.g., for noise reduction when evaluating all-to-all propagators. In this paper we present a Davidson-type eigensolver that utilizes the structural properties of the Hermitian Wilson-Dirac operator $Q$ to compute eigenpairs of this operator corresponding to small eigenvalues. The main idea is to exploit a synergy between the (outer) eigensolver and its (inner) iterative scheme which solves shifted linear systems. This is achieved by adapting the multigrid DD-$α$AMG algorithm to a solver for shifted systems involving the Hermitian Wilson-Dirac operator. We demonstrate that updating the coarse grid operator using eigenvector information obtained in the course of the generalized Davidson method is crucial to achieve good performance when calculating many eigenpairs, as our study of the local coherence shows. We compare our method with the commonly used software-packages PARPACK and PRIMME in numerical tests, where we are able to achieve significant improvements, with speed-ups of up to one order of magnitude and a near-linear scaling with respect to the number of eigenvalues. For illustration we compare the distribution of the small eigenvalues of $Q$ on a $64\times 32^3$ lattice with what is predicted by the Banks-Casher relation in the infinite volume limit.