论文标题

使用深层学习在道路网络上的温室气体排放预测

Greenhouse Gas Emission Prediction on Road Network using Deep Sequence Learning

论文作者

Alfaseeh, Lama, Tu, Ran, Farooq, Bilal, Hatzopoulou, Marianne

论文摘要

减轻运输系统对环境的实质性不良影响至关重要。因此,预测温室气(GHG)排放是深刻的主题之一,尤其是随着智能运输系统(ITS)的出现。我们开发了一个深度学习框架,以预测基于最具代表性的预测因子,例如速度,密度和以前的时间步骤的GHG ER,以预测链接级温室气体发射率(ER)(以CO2EQ克/秒为单位)。特别是,检查了具有外源变量的长期任期内存(LSTM)网络的各种规格,并将其与群集和具有外源变量的自动回归整合运动平均值(ARIMA)模型进行比较。多伦多市中心的道路网络被用作案例研究,并使用经过校准的交通微仿真和移动来合成高度详细的数据。发现从前三分钟开始的LSTM规范具有速度,密度,温室气体ER和链接速度,同时采用2个隐藏层以及系统地调整了超参数。采用30秒更新间隔略微改善了真实和预测的温室气体之间的相关性,但对预测准确性有负面影响,这反映在增加的根平方误差(RMSE)值上。有效地预测以较高数据要求的频率更高的温室气体排放将为大型道路网络上的非侧向生态切割铺平道路{以减轻对全球变暖的不利影响

Mitigating the substantial undesirable impact of transportation systems on the environment is paramount. Thus, predicting Greenhouse Gas (GHG) emissions is one of the profound topics, especially with the emergence of intelligent transportation systems (ITS). We develop a deep learning framework to predict link-level GHG emission rate (ER) (in CO2eq gram/second) based on the most representative predictors, such as speed, density, and the GHG ER of previous time steps. In particular, various specifications of the long-short term memory (LSTM) networks with exogenous variables are examined and compared with clustering and the autoregressive integrated moving average (ARIMA) model with exogenous variables. The downtown Toronto road network is used as the case study and highly detailed data are synthesized using a calibrated traffic microsimulation and MOVES. It is found that LSTM specification with speed, density, GHG ER, and in-links speed from three previous minutes performs the best while adopting 2 hidden layers and when the hyper-parameters are systematically tuned. Adopting a 30 second updating interval improves slightly the correlation between true and predicted GHG ERs, but contributes negatively to the prediction accuracy as reflected on the increased root mean square error (RMSE) value. Efficiently predicting GHG emissions at a higher frequency with lower data requirements will pave the way to non-myopic eco-routing on large-scale road networks {to alleviate the adverse impact on the global warming

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源