论文标题
最大3级订单$ d+1 $的最低度图$ D $ D $的分区
Subdivisions of maximal 3-degenerate graphs of order $d+1$ in graphs of minimum degree $d$
论文作者
论文摘要
我们证明,每个最低度的图表至少$ d \ ge 1 $都包含一些最大3级订单$ d+1 $的细分。这概括了Dirac($ d = 3 $)和Pelikán($ d = 4 $)的经典结果。我们猜想,对于任何平面最大3级图$ h $ d+d+1 $的$ h $和任何最低$ g $至少$ d $,$ g $的图形$ g $包含$ h $的细分。在情况下,我们对此进行了验证,$ h $是$ p_6^3 $和$ p_7^3 $
We prove that every graph of minimum degree at least $d \ge 1$ contains a subdivision of some maximal 3-degenerate graph of order $d+1$. This generalizes the classic results of Dirac ($d=3$) and Pelikán ($d=4$). We conjecture that for any planar maximal 3-degenerate graph $H$ of order $d+1$ and any graph $G$ of minimum degree at least $d$, $G$ contains a subdivision of $H$. We verify this in the case $H$ is $P_6^3$ and $P_7^3$