论文标题

跨越树木的平面双重瓶颈

Planar Bichromatic Bottleneck Spanning Trees

论文作者

Abu-Affash, A. Karim, Bhore, Sujoy, Carmi, Paz, Mitchell, Joseph S. B.

论文摘要

给定平面中的$ n $红色和蓝点的$ p $,$ p $的\ emph {planar bithotic spanning树}是$ p $的跨度树,因此每个边缘在红点和蓝点之间连接,没有两个边缘相交。在瓶颈平面双分散树问题中,目标是找到一个平面双跨度树$ t $,以便将$ t $中最长的边缘长度最小化。在本文中,我们表明此问题对于一般位置的积分是NP。此外,我们提出了一个多项式时$(8 \ sqrt {2})$ - 近似算法,通过证明任何瓶颈$λ$的双分化生成树可以转换为最多$ 8 \ sqrt {2}λ$的瓶颈瓶颈的平面式跨度树。

Given a set $P$ of $n$ red and blue points in the plane, a \emph{planar bichromatic spanning tree} of $P$ is a spanning tree of $P$, such that each edge connects between a red and a blue point, and no two edges intersect. In the bottleneck planar bichromatic spanning tree problem, the goal is to find a planar bichromatic spanning tree $T$, such that the length of the longest edge in $T$ is minimized. In this paper, we show that this problem is NP-hard for points in general position. Moreover, we present a polynomial-time $(8\sqrt{2})$-approximation algorithm, by showing that any bichromatic spanning tree of bottleneck $λ$ can be converted to a planar bichromatic spanning tree of bottleneck at most $8\sqrt{2}λ$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源