论文标题
在光谱间隙和cayley图的直径上
On the spectral gap and the diameter of Cayley graphs
论文作者
论文摘要
我们获得了一个新的界限,该结合连接图形的拉普拉斯操作员的第一个非繁琐特征值和图的直径,这对于具有较小直径或图形的图非常有效,具有与期望相当的最大路径的数量。
We obtain a new bound connecting the first non--trivial eigenvalue of the Laplace operator of a graph and the diameter of the graph, which is effective for graphs with small diameter or for graphs, having the number of maximal paths comparable to the expectation.