论文标题
在非线性弹性问题中隐藏的凸度
Hidden convexity in a problem of nonlinear elasticity
论文作者
论文摘要
我们在一般情况下研究可压缩和不可压缩的非线性弹性变化问题。我们的主要结果给出了足够的条件,就变形构型中压力的凸特性而言,平衡成为全局能量最小化器。我们还基于度量值映射,对问题的双重配方提供了凸的放松,这与我们条件下的原始问题相吻合。
We study compressible and incompressible nonlinear elasticity variational problems in a general context. Our main result gives a sufficient condition for an equilibrium to be a global energy minimizer, in terms of convexity properties of the pressure in the deformed configuration. We also provide a convex relaxation of the problem together with its dual formulation, based on measure-valued mappings, which coincides with the original problem under our condition.