论文标题
机器人学习和控制的结构化机械模型
Structured Mechanical Models for Robot Learning and Control
论文作者
论文摘要
基于模型的方法是控制机器人系统的主要范式,尽管它们的功效在很大程度上取决于所使用的模型的准确性。深度神经网络已被用来从数据中学习机器人动力学模型,但是它们遭受了数据信息的困扰和纳入先验知识的困难。我们介绍了结构化的机械模型,这是一种灵活的模型类,用于具有数据效率,易于对先验知识的机械系统的灵活模型类别,并且可以通过基于模型的控制技术易用。这项工作的目的是证明在建模机器人动力学时使用结构化机械模型代替黑盒神经网络的好处。我们证明它们从有限的数据中更好地概括,并在各种模拟机器人域上产生更可靠的基于模型的控制器。
Model-based methods are the dominant paradigm for controlling robotic systems, though their efficacy depends heavily on the accuracy of the model used. Deep neural networks have been used to learn models of robot dynamics from data, but they suffer from data-inefficiency and the difficulty to incorporate prior knowledge. We introduce Structured Mechanical Models, a flexible model class for mechanical systems that are data-efficient, easily amenable to prior knowledge, and easily usable with model-based control techniques. The goal of this work is to demonstrate the benefits of using Structured Mechanical Models in lieu of black-box neural networks when modeling robot dynamics. We demonstrate that they generalize better from limited data and yield more reliable model-based controllers on a variety of simulated robotic domains.