论文标题

LAI-NET:与神经网络的局部管理推断

LAI-Net: Local-Ancestry Inference with Neural Networks

论文作者

Montserrat, Daniel Mas, Bustamante, Carlos, Ioannidis, Alexander

论文摘要

局部熟练的推论(LAI),也称为祖先反卷积,提供了沿着人类基因组的高分辨率血统估计。在研究和行业中,LAI成为DNA序列分析的关键步骤,其应用从多基因风险评分(用于预测成年人的胚胎和疾病风险中的特征)到全基因组关联研究,从药物基因组学到人类人群历史的推论。尽管已经开发了许多LAI方法,但计算硬件(GPU)与机器学习技术(例如神经网络)相结合的进步正在使得能够开发快速,强大且易于共享和存储的新方法。在本文中,我们开发了名为LAI-NET的第一个基于神经网络的LAI方法,以最先进的方法和鲁棒性为缺失或嘈杂数据提供竞争精度,同时具有少量的层。

Local-ancestry inference (LAI), also referred to as ancestry deconvolution, provides high-resolution ancestry estimation along the human genome. In both research and industry, LAI is emerging as a critical step in DNA sequence analysis with applications extending from polygenic risk scores (used to predict traits in embryos and disease risk in adults) to genome-wide association studies, and from pharmacogenomics to inference of human population history. While many LAI methods have been developed, advances in computing hardware (GPUs) combined with machine learning techniques, such as neural networks, are enabling the development of new methods that are fast, robust and easily shared and stored. In this paper we develop the first neural network based LAI method, named LAI-Net, providing competitive accuracy with state-of-the-art methods and robustness to missing or noisy data, while having a small number of layers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源