论文标题
重新出现:层析成像的真实空间迭代重建引擎
RESIRE: real space iterative reconstruction engine for Tomography
论文作者
论文摘要
断层扫描对各种领域产生了革命性的影响,从生物学,放射学,等离子体物理学的宏观/介质量表研究到材料科学中3D原子结构的表征。层析成像的基本是从一组2D预测中重建一个3D对象。为了解决断层扫描问题,已经开发了许多算法。其中包括使用基于ra的转换和广义傅立叶迭代重建(GENFIRE)的转换技术的方法,基于傅立叶切片定理(FST),以及直接方法,例如同时迭代重建技术(SIRT)和同时的AlgeBraic Repongruction技术(SART)和同时重建技术(SART)和渐变技术(SART)和SARTICENICETINCE(SART)和SARTICENICENICER(SARTEICTION)。在本文中,我们提出了一个混合梯度下降,以通过结合傅立叶切片定理和变异的计算来解决层析成像问题。通过使用模拟和实验数据,我们表明,最先进的Resire可以产生比以前的方法更高的结果。重建的对象具有较高的质量和较小的相对错误。更重要的是,在仅提供部分投影信息的情况下,在其他方法失败的情况下,Reire可以严格处理部分阻塞的预测。我们预计,Resire不仅可以改善所有现有的层析成像应用中的重建质量,而且还将扩展层析成像方法,将其扩展到广泛的功能性薄膜。我们预计会在各种学科之间找到广泛的应用程序。
Tomography has made a revolutionary impact on diverse fields, ranging from macro-/mesoscopic scale studies in biology, radiology, plasma physics to the characterization of 3D atomic structure in material science. The fundamental of tomography is to reconstruct a 3D object from a set of 2D projections. To solve the tomography problem, many algorithms have been developed. Among them are methods using transformation technique such as computed tomography (CT) based on Radon transform and Generalized Fourier iterative reconstruction (GENFIRE) based on Fourier slice theorem (FST), and direct methods such as Simultaneous Iterative Reconstruction Technique (SIRT) and Simultaneous Algebraic Reconstruction Technique (SART) using gradient descent and algebra technique. In this paper, we propose a hybrid gradient descent to solve the tomography problem by combining Fourier slice theorem and calculus of variations. By using simulated and experimental data, we show that the state-of-art RESIRE can produce more superior results than previous methods; the reconstructed objects have higher quality and smaller relative errors. More importantly, RESIRE can deal with partially blocked projections rigorously where only part of projection information are provided while other methods fail. We anticipate RESIRE will not only improve the reconstruction quality in all existing tomographic applications, but also expand tomography method to a broad class of functional thin films. We expect RESIRE to find a broad applications across diverse disciplines.