论文标题

基于通气的识别3D Gross-Pitaevskii方程的非线性激发

Deflation-based Identification of Nonlinear Excitations of the 3D Gross--Pitaevskii equation

论文作者

Boullé, N., Charalampidis, E. G., Farrell, P. E., Kevrekidis, P. G.

论文摘要

我们介绍了描述原子玻色的凝结物的3D总溶液 - 彼得韦斯基方程。该模型支持精致的模式,包括具有涡度的激发状态。发现的相干结构具有惊人的拓扑特征,涉及涡旋环和多个弯曲涡流线的组合。尽管不稳定,但其中许多人在动态模拟中持续很长时间。这些解决方案是通过一种称为通气的最先进的数值技术来识别的,该技术预计将适用于其他物理领域的许多问题。

We present previously unknown solutions to the 3D Gross--Pitaevskii equation describing atomic Bose-Einstein condensates. This model supports elaborate patterns, including excited states bearing vorticity. The discovered coherent structures exhibit striking topological features, involving combinations of vortex rings and multiple, possibly bent vortex lines. Although unstable, many of them persist for long times in dynamical simulations. These solutions were identified by a state-of-the-art numerical technique called deflation, which is expected to be applicable to many problems from other areas of physics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源