论文标题
在边缘色的顶点稳定性图
On the edge chromatic vertex stability number of graphs
论文作者
论文摘要
对于图形$ g $的任意不变性$ρ(g)$,$ρ-$顶点稳定性$vs_ρ(g)$是$ g $的最小数量的$ g $的顶点数量,其删除导致图$ h \ subseteq g $,带有$ρ(h)\ neqρ(g)$ e(g)$或$ e(h)$ e(h)= $ v $ v $ v $ v $ v $ In this paper, first we give some general lower and upper bounds for the $ρ$-vertex stability number, and then study the edge chromatic stability number of graphs, $vs_{χ^{\prime}}(G)$, where $χ^{\prime}=χ^{\prime}(G)$ is edge chromatic number (chromatic index) of $G$.我们证明了此参数的一些一般结果,并确定$ vs_ {χ^{\ prime}}(g)$对于特定的图形类。
For an arbitrary invariant $ρ(G)$ of a graph $G$, the $ρ-$vertex stability number $vs_ρ(G)$ is the minimum number of vertices of $G$ whose removal results in a graph $H\subseteq G$ with $ρ(H)\neq ρ(G)$ or with $E(H)=\varnothing$. In this paper, first we give some general lower and upper bounds for the $ρ$-vertex stability number, and then study the edge chromatic stability number of graphs, $vs_{χ^{\prime}}(G)$, where $χ^{\prime}=χ^{\prime}(G)$ is edge chromatic number (chromatic index) of $G$. We prove some general results for this parameter and determine $vs_{χ^{\prime}}(G)$ for specific classes of graphs.