论文标题
一个用于3+1D宇宙学的de Sitter No No Hair定理,等轴测组形成二维轨道
A de Sitter no-hair theorem for 3+1d Cosmologies with isometry group forming 2-dimensional orbits
论文作者
论文摘要
我们使用平均曲率流量法,3+1维宇宙学具有正宇宙的尺寸宇宙学,满足主要能量条件的物质,并具有可以通过二维表面散落的空间切片,这些表面是对称组的封闭轨道。如果这些表面具有非阳性的Euler特性(或者在2个spheres的情况下,如果初始2个sphers足够大),并且如果初始空间切片到处都在膨胀,那么我们证明,渐近的时空会在物理上与de spaception abter abless a Blickist of de spaception spacementions a Blickist of de spaception spaceptiments无处可区分。尽管存在初始任意大大密度波动,但这仍然是真正的。
We study, using Mean Curvature Flow methods, 3+1 dimensional cosmologies with a positive cosmological constant, matter satisfying the dominant and the strong energy conditions, and with spatial slices that can be foliated by 2-dimensional surfaces that are the closed orbits of a symmetry group. If these surfaces have non-positive Euler characteristic (or in the case of 2-spheres, if the initial 2-spheres are large enough) and also if the initial spatial slice is expanding everywhere, then we prove that asymptotically the spacetime becomes physically indistinguishable from de Sitter space on arbitrarily large regions of spacetime. This holds true notwithstanding the presence of initial arbitrarily-large density fluctuations.