论文标题

通过数值集成来追踪本地帕累托最佳点

Tracing locally Pareto optimal points by numerical integration

论文作者

Bolten, Matthias, Doganay, Onur Tanil, Gottschalk, Hanno, Klamroth, Kathrin

论文摘要

我们建议采用一种新颖的方法,以实现足够平滑不受限制的双标准优化问题的帕累托前沿的有效和可靠的近似方法。针对问题的加权总数制定的最佳条件会产生(部分)作为参数曲线(由标量参数参数)的描述(即加权总标量表中的权重)。它的敏感性W.R.T.参数变化可以通过普通微分方程(ODE)描述。从任意的初始帕累托最佳解决方案开始,帕累托前沿可以通过数值集成来追溯。我们提供了基于Lipschitz属性的错误分析,并为ODE的数值解提供了一种显式runge-kutta方法。该方法在双标准凸出二次编程问题上进行了验证,该问题是明确已知的,并在复杂的双标准形状优化问题上进行了数值测试,该问题涉及状态方程的有限元离散化。

We suggest a novel approach for the efficient and reliable approximation of the Pareto front of sufficiently smooth unconstrained bi-criteria optimization problems. Optimality conditions formulated for weighted sum scalarizations of the problem yield a description of (parts of) the Pareto front as a parametric curve, parameterized by the scalarization parameter (i.e., the weight in the weighted sum scalarization). Its sensitivity w.r.t. parameter variations can be described by an ordinary differential equation (ODE). Starting from an arbitrary initial Pareto optimal solution, the Pareto front can then be traced by numerical integration. We provide an error analysis based on Lipschitz properties and suggest an explicit Runge-Kutta method for the numerical solution of the ODE. The method is validated on bi-criteria convex quadratic programming problems for which the exact solution is explicitly known, and numerically tested on complex bi-criteria shape optimization problems involving finite element discretizations of the state equation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源