论文标题

MEMTORCH:MEMRISTIVE深度学习系统的开源模拟框架

MemTorch: An Open-source Simulation Framework for Memristive Deep Learning Systems

论文作者

Lammie, Corey, Xiang, Wei, Linares-Barranco, Bernabé, Azghadi, Mostafa Rahimi

论文摘要

回忆设备表现出了巨大的希望,可以促进加速度并提高深度学习(DL)系统的功率效率。使用这些电阻随机访问存储器(RRAM)设备构建的横杆体系结构可用于有效地实现各种内存计算操作,例如多重积累(MAC)和独立的相关性,这些操作在深层神经网络(DNNS)和卷积神经网络(CNNS)中大量使用。然而,回忆设备面临着衰老和非理想性的关注,这些设备限制了在电路级实现之前,应考虑备忘性深度学习系统(MDLS)的准确性,可靠性和鲁棒性。该原始软件出版物(OSP)介绍了Memtorch,这是一个开源框架,用于定制的大规模磁盘DL模拟,并精致着眼于对设备非理想性的共模拟。 Memtorch还促进了钥匙横梁外围电路的共同建模。 Memtorch采用现代化的软件工程方法,并直接与知名的Pytorch机器学习(ML)库集成

Memristive devices have shown great promise to facilitate the acceleration and improve the power efficiency of Deep Learning (DL) systems. Crossbar architectures constructed using these Resistive Random-Access Memory (RRAM) devices can be used to efficiently implement various in-memory computing operations, such as Multiply Accumulate (MAC) and unrolled-convolutions, which are used extensively in Deep Neural Networks (DNNs) and Convolutional Neural Networks (CNNs). However, memristive devices face concerns of aging and non-idealities, which limit the accuracy, reliability, and robustness of Memristive Deep Learning Systems (MDLSs), that should be considered prior to circuit-level realization. This Original Software Publication (OSP) presents MemTorch, an open-source framework for customized large-scale memristive DL simulations, with a refined focus on the co-simulation of device non-idealities. MemTorch also facilitates co-modelling of key crossbar peripheral circuitry. MemTorch adopts a modernized soft-ware engineering methodology and integrates directly with the well-known PyTorch Machine Learning (ML) library

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源