论文标题
局部适应提高了自动化X射线胸部疾病检测的深度学习模型的准确性:泰语研究
Local Adaptation Improves Accuracy of Deep Learning Model for Automated X-Ray Thoracic Disease Detection : A Thai Study
论文作者
论文摘要
尽管在人工智能领域进行医学图像诊断方面的研究很有希望,但在泰国没有进行大规模验证研究,以确认将这种算法应用于本地数据集的准确性和实用性。在这里,我们介绍了使用421,859个局部胸部X光片的自动化胸部疾病检测的深度学习算法的广泛开发和测试。我们的研究表明,卷积神经网络可以在检测13个胸部X射线的13个常规异常条件方面取得出色的性能,并且将局部图像纳入训练集是该模型成功的关键。本文提出了CXR异常检测的最新模型,平均AUROC为0.91。该模型,如果整合到工作流程中,则可以在CXR分析过程中为医生减少高达55.6%的工作。我们的工作强调了投资医学诊断算法的本地研究的重要性,以确保预期区域内的安全有效使用。
Despite much promising research in the area of artificial intelligence for medical image diagnosis, there has been no large-scale validation study done in Thailand to confirm the accuracy and utility of such algorithms when applied to local datasets. Here we present a wide-reaching development and testing of a deep learning algorithm for automated thoracic disease detection, utilizing 421,859 local chest radiographs. Our study shows that convolutional neural networks can achieve remarkable performance in detecting 13 common abnormality conditions on chest X-ray, and the incorporation of local images into the training set is key to the model's success. This paper presents a state-of-the-art model for CXR abnormality detection, reaching an average AUROC of 0.91. This model, if integrated to the workflow, can result in up to 55.6% work reduction for medical practitioners in the CXR analysis process. Our work emphasizes the importance of investing in local research of medical diagnosis algorithms to ensure safe and efficient usage within the intended region.