论文标题

在视频成像数据中使用应用程序的应用程序中的聚类事件的实时检测

Real-time Detection of Clustered Events in Video-imaging data with Applications to Additive Manufacturing

论文作者

Yan, Hao, Grasso, Marco, Paynabar, Kamran, Colosimo, Bianca Maria

论文摘要

在线过程监视应用程序中使用视频模仿数据在行业中越来越受欢迎。在此框架中,需要时空统计过程监视方法来捕获相关信息内容并信号可能失控状态。视频成像数据的特征是时空变异性结构取决于基本现象,并且典型的失控模式与在时间和空间上局部的事件有关。在本文中,我们提出了一种在视频成像数据中进行异常检测的集成时空分解和回归方法。控制外事件通常是稀疏的空间聚集,并且在时间上保持一致。因此,目标不仅要尽快检测异常(“何时”),还可以找到它(“ where”)。所提出的方法通过将原始时空数据分解为随机的自然事件,稀疏的空间聚集和时间一致的异常事件以及随机噪声来起作用。提出了有关时空回归的递归估计程序,以实现所提出的方法的实时实施。最后,提出了一个似然比测试程序来检测热点何时何地发生。提出的方法应用于对视频成像数据的分析,以在金属添加剂制造过程中在层的过程中检测和定位局部过热现象(“热点”)。

The use of video-imaging data for in-line process monitoring applications has become more and more popular in the industry. In this framework, spatio-temporal statistical process monitoring methods are needed to capture the relevant information content and signal possible out-of-control states. Video-imaging data are characterized by a spatio-temporal variability structure that depends on the underlying phenomenon, and typical out-of-control patterns are related to the events that are localized both in time and space. In this paper, we propose an integrated spatio-temporal decomposition and regression approach for anomaly detection in video-imaging data. Out-of-control events are typically sparse spatially clustered and temporally consistent. Therefore, the goal is to not only detect the anomaly as quickly as possible ("when") but also locate it ("where"). The proposed approach works by decomposing the original spatio-temporal data into random natural events, sparse spatially clustered and temporally consistent anomalous events, and random noise. Recursive estimation procedures for spatio-temporal regression are presented to enable the real-time implementation of the proposed methodology. Finally, a likelihood ratio test procedure is proposed to detect when and where the hotspot happens. The proposed approach was applied to the analysis of video-imaging data to detect and locate local over-heating phenomena ("hotspots") during the layer-wise process in a metal additive manufacturing process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源