论文标题
在弱拜占庭机器人存在下,在匿名环上有效分散
Efficient Dispersion on an Anonymous Ring in the Presence of Weak Byzantine Robots
论文作者
论文摘要
移动机器人在图上的分散问题要求$ n $机器人最初任意放置在$ n $ node匿名图的节点上,自主移动以达到最终配置,其中每个节点上最多都有一个机器人。由于与其他基本机器人协调问题的关系,例如勘探,散射,负载平衡,自动驾驶电动汽车搬迁到充电站等。机器人具有独特的IDS,通常在$ [1,poly(poly(poly(n))$ [1,poly(poly(poly(n)])中,而图形是匿名的,即匿名,notifififififififififififififififififififififififififififififififififififififififififififififififs,该问题引起了重大关注。目的是同时最大程度地减少两个性能指标:(i)到达每个机器人的分散和(ii)内存要求的时间。当机器人不损坏时,这个问题已经相对研究。 在本文中,我们将拜占庭故障的概念介绍给这个问题,即,在最多$ f $ byzantine机器人存在的情况下,我们正式化了分散问题。然后,我们在环上研究问题,同时优化算法的时间复杂性和每个机器人的内存需求。具体而言,我们设计了确定性算法,该算法试图匹配时间下限($ω(n)$ rounds)和内存下限($ω(\ log n)$每个机器人)。 我们的主要结果是一种确定性算法,该算法是时间和内存最佳的,即$ o(n)$ rounds和$ o(\ log n)$ $(\ log n)$每个机器人所需的内存位,但要受某些约束。随后,我们提供的结果需要更少的假设,但仅是时间或内存最佳,但两者兼而有之。我们还提供了一种经常使用的原始原始,该机器人最初收集在环的节点上,并以时间和内存的最佳方式分散它们,而无需其他假设。
The problem of dispersion of mobile robots on a graph asks that $n$ robots initially placed arbitrarily on the nodes of an $n$-node anonymous graph, autonomously move to reach a final configuration where exactly each node has at most one robot on it. This problem is of significant interest due to its relationship to other fundamental robot coordination problems, such as exploration, scattering, load balancing, relocation of self-driving electric cars to recharge stations, etc. The robots have unique IDs, typically in the range $[1,poly(n)]$ and limited memory, whereas the graph is anonymous, i.e., the nodes do not have identifiers. The objective is to simultaneously minimize two performance metrics: (i) time to achieve dispersion and (ii) memory requirement at each robot. This problem has been relatively well-studied when robots are non-faulty. In this paper, we introduce the notion of Byzantine faults to this problem, i.e., we formalize the problem of dispersion in the presence of up to $f$ Byzantine robots. We then study the problem on a ring while simultaneously optimizing the time complexity of algorithms and the memory requirement per robot. Specifically, we design deterministic algorithms that attempt to match the time lower bound ($Ω(n)$ rounds) and memory lower bound ($Ω(\log n)$ bits per robot). Our main result is a deterministic algorithm that is both time and memory optimal, i.e., $O(n)$ rounds and $O(\log n)$ bits of memory required per robot, subject to certain constraints. We subsequently provide results that require less assumptions but are either only time or memory optimal but not both. We also provide a primitive, utilized often, that takes robots initially gathered at a node of the ring and disperses them in a time and memory optimal manner without additional assumptions required.