论文标题

随机锥的阈值现象

Threshold phenomena for random cones

论文作者

Hug, Daniel, Schneider, Rolf

论文摘要

我们考虑在$ d $二维的欧几里得空间上具有均匀的概率分布,并具有将其分配给通过原点的任何超平面分配给零的属性。给定$ n $独立的随机向量,在这种分布的情况下,在它们不能积极地跨越整个空间的情况下,这些向量的正船体是一个随机的多面体锥(并且其与单位球的相交是随机的球形多型)。它首先是由Cover和Efron研究的。我们考虑这些随机锥的预期面部数,并描述尺寸$ d $和随机向量的数字$ n $ n倾向于无限时的阈值现象。以类似的方式,我们对待实体角度,更普遍地处理格拉曼角。当$ k $也倾向于无限时,我们进一步考虑了$ k $ faces的预期数量和索引$ d-k $的Grassmann角度。

We consider an even probability distribution on the $d$-dimensional Euclidean space with the property that it assigns measure zero to any hyperplane through the origin. Given $N$ independent random vectors with this distribution, under the condition that they do not positively span the whole space, the positive hull of these vectors is a random polyhedral cone (and its intersection with the unit sphere is a random spherical polytope). It was first studied by Cover and Efron. We consider the expected face numbers of these random cones and describe a threshold phenomenon when the dimension $d$ and the number $N$ of random vectors tend to infinity. In a similar way, we treat the solid angle, and more generally the Grassmann angles. We further consider the expected numbers of $k$-faces and of Grassmann angles of index $d-k$ when also $k$ tends to infinity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源