论文标题

由分数噪声驱动的3D随机原始方程的指数稳定性

Exponential stability of 3D stochastic primitive equations driven by fractional noise

论文作者

Wang, Lidan, Zhou, Guoli

论文摘要

在本文中,我们研究了解决由分数噪声驱动的3D随机原始方程的稳定性。由于布朗运动的分数与布朗运动基本不同,因此无法使用许多随机分析工具来研究随机系统的指数稳定性。因此,除了布朗运动的标准方法外,我们开发了一种新方法,以表明由分数噪声驱动的3D随机原始方程几乎肯定地呈肯定地呈固定溶液呈呈成倍率。该方法可以应用于其他随机流体动力方程和其他噪音,包括布朗运动和莱维噪声。

In this article, we study the stability of solutions to 3D stochastic primitive equations driven by fractional noise. Since the fractional Brownian motion is essentially different from Brownian motion, lots of stochastic analysis tools are not available to study the exponential stability for the stochastic systems. Therefore, apart from the standard method for the case of Brownian motion, we develop a new method to show that 3D stochastic primitive equations driven by fractional noise converge almost surely exponentially to the stationary solutions. This method may be applied to other stochastic hydrodynamic equations and other noises including Brownian motion and Lévy noise.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源