论文标题

所有元素都具有可计数右恩格尔汇集的紧凑型组

Compact groups in which all elements have countable right Engel sinks

论文作者

Khukhro, E. I., Shumyatsky, P.

论文摘要

$ g $的元素$ g $的右engel汇入$ {\ mathscr r}(g)$,以便每$ x \ in g $ in g $ in g $所有足够长的换向器$ [... [[g,x],x],x],\ dots,x],\ dots,x] $属于$ {\ mathscr r}(g)(g)$。 (因此,$ g $是当我们可以选择$ {\ mathscr r}(g)= \ {1 \} $的情况下。

A right Engel sink of an element $g$ of a group $G$ is a set ${\mathscr R}(g)$ such that for every $x\in G$ all sufficiently long commutators $[...[[g,x],x],\dots ,x]$ belong to ${\mathscr R}(g)$. (Thus, $g$ is a right Engel element precisely when we can choose ${\mathscr R}(g)=\{ 1\}$.) It is proved that if every element of a compact (Hausdorff) group $G$ has a countable (or finite) right Engel sink, then $G$ has a finite normal subgroup $N$ such that $G/N$ is locally nilpotent.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源