论文标题

Danielewski表面的各向同性小组

On Isotropy Group of Danielewski Surfaces

论文作者

Baltazar, Rene, Veloso, Marcelo

论文摘要

在目前的工作中,我们考虑了$(\ Mathcal b,d)$的差分环,其中$ \ Mathcal b $是DanieLewski表面,而$ D $是$ \ Mathcal b $的本地nilpotent派生。在最近的几部作品的影响下,我们描述了DanieLewski表面上的本地nilpotent推导的各向异性组,在$ xy =φ(z)$,$ x^ny =φ(z)$,和$ f(x)x =φ(z)$中。

In the present work we consider differential rings of the form $(\mathcal B,D)$ where $\mathcal B$ is a Danielewski surface and $D$ is a locally nilpotent derivation on $\mathcal B$. Influenced by several recent works, we describe the isotropy group of a locally nilpotent derivation, $D$, on Danielewski surfaces, in the cases $xy = φ(z)$, $x^ny=φ(Z)$, and $f(x)x = φ(z)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源