论文标题

$ \ mathbb {r}^3 $中弱阻尼的五重量波方程的无限能量解决方案

Infinite energy solutions for weakly damped quintic wave equations in $\mathbb{R}^3$

论文作者

Mei, Xinyu, Savostianov, Anton, Sun, Chunyou, Zelik, Sergey

论文摘要

该论文对无限能源解决方案进行了全面研究及其对$ \ Mathbb {r}^3 $的半线弱阻尼波方程的长期行为。这项研究包括所谓的Shatah-Struwe解决方案的全球适应性,它们的消散性,局部紧凑的全球吸引子(在统一的本地相位空间)以及它们的额外规律性。

The paper gives a comprehensive study of infinite-energy solutions and their long-time behavior for semi-linear weakly damped wave equations in $\mathbb{R}^3$ with quintic nonlinearities. This study includes global well-posedness of the so-called Shatah-Struwe solutions, their dissipativity, the existence of a locally compact global attractors (in the uniformly local phase spaces) and their extra regularity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源