论文标题

限制$ f(t,b)$ teparalleal重力从能量条件

Constraining $f(T,B)$ teleparallel gravity from energy conditions

论文作者

Bhattacharjee, Snehasish

论文摘要

$ f(t,b)$ teparalalal Plastility是最近提出的对流行$ f(t)$ teparalalle Gravility的直接概括,并通过结合边界项$ b = \ frac {2} {e} {e} {e} \ partial_ {i}(e t ^{i})标量\ cite {ftb13}。在这项工作中,我调查了一些动机$ f(t,b)$ teleparallear的重力模型的可行性,$ f =αb^n+βt^m $,$ f =αb^n t^m $和$ f =α\ log(b)+βT$α,β,n $和$ m $的可行性是免费参数。我使用了最近对宇宙学模型的参数空间的角落,能量密度保持积极且能量状况较弱(即$ρ+p \ geq 0 $,$ p $和$ p $),分别表示宇宙压力和能量密度的参数= eS的估计值(即$ρ+p \ geq 0 $,$ p $和$ρ$)分别代表宇宙压力和能量密度的参数,这意味着异能值, p/ρ\ simeq-1 $,因此与加速宇宙一致。

$f(T,B)$ teleparallel gravity is a recently proposed straightforward generalization of the popular $f(T)$ teleparallel gravity by the incorporation of a boundary term $B=\frac{2}{e}\partial_{i}(e T ^{i}) = \bigtriangledown_{i}T^{i}$ where $T$ denote the torsion scalar \cite{ftb13}. In this work, I investigate the viability of some well motivated $f(T,B)$ teleparallel gravity models of the forms $f=αB^n+βT^m$, $f=αB^n T^m$ and $f=α\log (B)+βT$ where $α, β, n$ and $m$ are free parameters from the inequalities imposed the the weak energy condition. I use the recent estimates of Hubble, deceleration, jerk and snap parameters in finding corners in parameter spaces for the cosmological models for which the energy density remain positive and the weak energy condition ( i.e, $ρ+p \geq 0$, where $p$ and $ρ$ represent respectively the cosmological pressure and energy density) attains a minute positive value, as this implies the EoS parameter $ω= p/ρ\simeq-1$ and therefore consistent with an accelerating universe.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源