论文标题
CS-AF:针对皮肤病变分类的成本敏感多分类剂主动融合框架
CS-AF: A Cost-sensitive Multi-classifier Active Fusion Framework for Skin Lesion Classification
论文作者
论文摘要
卷积神经网络(CNN)已在皮肤病变分析中实现了最新性能。与单个CNN分类器相比,通过融合方法组合多个分类器的结果表明更有效和健壮。由于在设计有效的融合方法的同时,通常有限的皮肤病变数据集在统计上有限且具有统计偏见,因此不仅要考虑每个分类器在培训/验证数据集中的性能,还要考虑每个分类器在测试阶段中有关单个样本的相对判别能力(例如,置信度),这是一种需要进行主动融合方法的单个样本。此外,在皮肤病变分析中,某些类别(例如,良性病变)的数据通常很丰富,使其成为代表性过多的多数,而其他一些类别(例如,癌变)的数据不足,使它们不足,使其成为少数群体不足。精确地识别出代表性不足的样本(即,就数据量而言),但更重要的少数族裔类(例如某些癌性病变)的样本更为至关重要。换句话说,将更严重的病变错误分类为良性或更严重的病变应该具有相对的成本(例如,金钱,时间甚至生活)。为了应对此类挑战,我们提出了CS-AF,这是一种针对皮肤病变分类的成本敏感的多分类器主动融合框架。在实验评估中,我们在ISIC研究数据集上准备了96个基本分类器(12个CNN体系结构)。我们的实验结果表明,我们的框架始终优于静态融合竞争者。
Convolutional neural networks (CNNs) have achieved the state-of-the-art performance in skin lesion analysis. Compared with single CNN classifier, combining the results of multiple classifiers via fusion approaches shows to be more effective and robust. Since the skin lesion datasets are usually limited and statistically biased, while designing an effective fusion approach, it is important to consider not only the performance of each classifier on the training/validation dataset, but also the relative discriminative power (e.g., confidence) of each classifier regarding an individual sample in the testing phase, which calls for an active fusion approach. Furthermore, in skin lesion analysis, the data of certain classes (e.g., the benign lesions) is usually abundant making them an over-represented majority, while the data of some other classes (e.g., the cancerous lesions) is deficient, making them an underrepresented minority. It is more crucial to precisely identify the samples from an underrepresented (i.e., in terms of the amount of data) but more important minority class (e.g., certain cancerous lesion). In other words, misclassifying a more severe lesion to a benign or less severe lesion should have relative more cost (e.g., money, time and even lives). To address such challenges, we present CS-AF, a cost-sensitive multi-classifier active fusion framework for skin lesion classification. In the experimental evaluation, we prepared 96 base classifiers (of 12 CNN architectures) on the ISIC research datasets. Our experimental results show that our framework consistently outperforms the static fusion competitors.