论文标题
交叉数的本地恒定
Local Constancy of Intersection Numbers
论文作者
论文摘要
我们证明,在某些情况下,在参数中不断在本地变化的正式方案上的相交数量。为此,我们定义了产品的$ s \ times m $,其中包括本地正式方案$ m $和研究交叉点。我们的应用是W. Zhang的算术基本引理,结果有助于消除其最近证明的限制。 Arxiv:1909.02697。
We prove that, in certain situations, intersection numbers on formal schemes that come in profinite families vary locally constantly in the parameter. To this end, we define the product $S\times M$ of a profinite set $S$ with a locally noetherian formal scheme $M$ and study intersections thereon. Our application is to the Arithmetic Fundamental Lemma of W. Zhang where the result helps to remove a restriction in its recent proof, cf. arXiv:1909.02697.