论文标题

迈向基于角色的善解人意的对话模型

Towards Persona-Based Empathetic Conversational Models

论文作者

Zhong, Peixiang, Zhang, Chen, Wang, Hao, Liu, Yong, Miao, Chunyan

论文摘要

善解人意的对话模型已被证明可以提高众多域中的用户满意度和任务成果。在心理学中,角色已被证明与个性高度相关,这反过来又影响了同理心。此外,我们的经验分析还表明,角色在同理心对话中起着重要作用。为此,我们提出了针对基于角色的同理心对话的新任务,并提出了关于角色对善解人心反应的影响的首次实证研究。具体而言,我们首先提出了一个新型的大型多域数据集,用于基于角色的同理心对话。然后,我们提出了Cobert,这是一个有效的基于BERT的响应选择模型,该模型在我们的数据集中获得了最先进的性能。最后,我们进行了广泛的实验,以研究角色对同理心反应的影响。值得注意的是,我们的结果表明,当科伯特接受善解人意对话培训时,角色可以改善同理心反应,而不是非同情对话,从而在人类对话中建立了角色与同理心之间的经验联系。

Empathetic conversational models have been shown to improve user satisfaction and task outcomes in numerous domains. In Psychology, persona has been shown to be highly correlated to personality, which in turn influences empathy. In addition, our empirical analysis also suggests that persona plays an important role in empathetic conversations. To this end, we propose a new task towards persona-based empathetic conversations and present the first empirical study on the impact of persona on empathetic responding. Specifically, we first present a novel large-scale multi-domain dataset for persona-based empathetic conversations. We then propose CoBERT, an efficient BERT-based response selection model that obtains the state-of-the-art performance on our dataset. Finally, we conduct extensive experiments to investigate the impact of persona on empathetic responding. Notably, our results show that persona improves empathetic responding more when CoBERT is trained on empathetic conversations than non-empathetic ones, establishing an empirical link between persona and empathy in human conversations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源