论文标题

北京大流行期间共享自行车使用的时空行为模式的分析

Analysis of Spatial-temporal Behavior Pattern of the Share Bike Usage during COVID-19 Pandemic in Beijing

论文作者

Chai, Xinwei, Guo, Xian, Xiao, Jihua, Jiang, Jie

论文摘要

在Covid-19的流行期间,全世界正在对公共卫生和经济造成严重的危机。了解大流行期间人类流动性有助于人们设计干预策略和弹性措施。广泛使用的自行车共享系统(BSS)可以表征大城市时间和空间的城市居民活动,但在流行病学研究中很少有报道。在本文中,我们基于BSS数据提出了人类流动性分析框架},该框架检查了共享自行车使用者的时空特征,检测到不同流血阶段的关键时间节点,并证明了由于Covid-19威胁和行政限制的发作而引起的人类流动性的演变。我们通过使用共享自行车使用与POI(感兴趣的点)之间的共同位置分析的结果来评估大流行的净影响。我们的结果表明,大流行使整体自行车使用量减少了64.8%,然后出现了平均增加(15.9%)的股票自行车使用情况(15.9%),这表明生产性和住宅活动已经部分恢复,但远离普通日子。这些发现可能是流行病学研究的参考,并在当前的Covid-19爆发和城市规模的其他流行病事件的背景下为决策提供了信息。

During the epidemics of COVID-19, the whole world is experiencing a serious crisis on public health and economy. Understanding human mobility during the pandemic helps one to design intervention strategies and resilience measures. The widely used Bike Sharing System (BSS) can characterize the activities of urban dwellers over time & space in big cities but is rarely reported in epidemiological research. In this paper, we present a human mobility analyzing framework} based on BSS data, which examines the spatiotemporal characteristics of share bike users, detects the key time nodes of different pandemic stages, and demonstrats the evolution of human mobility due to the onset of the COVID-19 threat and administrative restrictions. We assessed the net impact of the pandemic by using the result of co-location analysis between share bike usage and POIs (Point Of Interest). Our results show the pandemic reduced the overall bike usage by 64.8%, then an average increase (15.9%) in share bike usage appeared afterwards, suggesting that productive and residential activities have partially recovered but far from the ordinary days. These findings could be a reference for epidemiological researches and inform policymaking in the context of the current COVID-19 outbreak and other epidemic events at city-scale.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源