论文标题
在最接近的邻居随机步行中,在正晶格上渐近零漂移
On a maximum of nearest-neighbor random walk with asymptotically zero drift on lattice of positive half line
论文作者
论文摘要
考虑一个最近的邻居随机步行,在正线上有一定的渐近零漂移。让$ m $是从$ 1 $开始的最大游览,以$ 0的结尾。$我们研究$ m $的分布并描述其渐近性,这与简单的随机步行的分布完全不同。
Consider a nearest-neighbor random walk with certain asymptotically zero drift on the positive half line. Let $M$ be the maximum of an excursion starting from $1$ and ending at $0.$ We study the distribution of $M$ and characterize its asymptotics, which is quite different from those of simple random walks.