论文标题

来自可解释,不确定性和多任务深度神经网络的术后并发症的动态预测

Dynamic Predictions of Postoperative Complications from Explainable, Uncertainty-Aware, and Multi-Task Deep Neural Networks

论文作者

Shickel, Benjamin, Loftus, Tyler J., Ruppert, Matthew, Upchurch, Gilbert R., Ozrazgat-Baslanti, Tezcan, Rashidi, Parisa, Bihorac, Azra

论文摘要

术后并发症的准确预测可以为预后,减少术前风险和术后资源使用提供共同决定。我们假设,多任务深度学习模型将胜过随机森林模型在预测术后并发症方面,并且整合高分辨率的术中生理时间序列将导致更加颗粒状和个性化的健康表征,从而将与术前预测相比,可以改善预后。在一项对大学医学中心接受67,481例住院外科手术的56,242例患者进行的纵向队列研究中,我们将深度学习模型与随机森林进行了比较,用于预测9个常见的术后并发症,使用术前,术中和围手术期患者数据进行了比较。我们的研究表明,在实验环境中,有几个重要的结果表明,深度学习的实用性以捕获患者健康的更精确表示,以增强手术决策支持。多任务学习通过降低计算资源而不损害预测性能来提高效率。综合梯度可解释性机制确定了每种并发症的潜在可修改风险因素。蒙特卡洛辍学方法提供了预测不确定性的定量度量,该方法有可能增强临床信任。多任务学习,可解释性机制和不确定性指标表现出促进有效临床实施的潜力。

Accurate prediction of postoperative complications can inform shared decisions regarding prognosis, preoperative risk-reduction, and postoperative resource use. We hypothesized that multi-task deep learning models would outperform random forest models in predicting postoperative complications, and that integrating high-resolution intraoperative physiological time series would result in more granular and personalized health representations that would improve prognostication compared to preoperative predictions. In a longitudinal cohort study of 56,242 patients undergoing 67,481 inpatient surgical procedures at a university medical center, we compared deep learning models with random forests for predicting nine common postoperative complications using preoperative, intraoperative, and perioperative patient data. Our study indicated several significant results across experimental settings that suggest the utility of deep learning for capturing more precise representations of patient health for augmented surgical decision support. Multi-task learning improved efficiency by reducing computational resources without compromising predictive performance. Integrated gradients interpretability mechanisms identified potentially modifiable risk factors for each complication. Monte Carlo dropout methods provided a quantitative measure of prediction uncertainty that has the potential to enhance clinical trust. Multi-task learning, interpretability mechanisms, and uncertainty metrics demonstrated potential to facilitate effective clinical implementation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源