论文标题

结构正则化

Structural Regularization

论文作者

Mao, Jiaming, Zheng, Zhesheng

论文摘要

我们提出了一种通过基于经济理论作为统计模型的正规化的结构模型来建模数据的新方法。我们表明,即使结构模型被误指定,只要它对数据生成机制提供信息,我们的方法也可以胜过(未指定的)结构模型和非结构性调节的统计模型。我们的方法允许将理论解释为先验知识,并且可以用于统计预测和因果推断。它通过展示如何将理论纳入统计建模可以显着改善脑外预测,并为合成减少形式和结构方法的因果效应估计提供一种方法,从而有助于转移学习。仿真实验证明了我们在各种环境中的潜力,包括第一价格拍卖,进入和退出的动态模型以及使用工具变量的需求估计。我们的方法不仅在经济学中都有潜在的应用,而且在其他科学学科中,其理论模型提供了重要的见解,但仍存在重大指定问题。

We propose a novel method for modeling data by using structural models based on economic theory as regularizers for statistical models. We show that even if a structural model is misspecified, as long as it is informative about the data-generating mechanism, our method can outperform both the (misspecified) structural model and un-structural-regularized statistical models. Our method permits a Bayesian interpretation of theory as prior knowledge and can be used both for statistical prediction and causal inference. It contributes to transfer learning by showing how incorporating theory into statistical modeling can significantly improve out-of-domain predictions and offers a way to synthesize reduced-form and structural approaches for causal effect estimation. Simulation experiments demonstrate the potential of our method in various settings, including first-price auctions, dynamic models of entry and exit, and demand estimation with instrumental variables. Our method has potential applications not only in economics, but in other scientific disciplines whose theoretical models offer important insight but are subject to significant misspecification concerns.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源