论文标题
高精度角度分辨反射光谱的设备
Apparatus for high-precision angle-resolved reflection spectroscopy in the mid-infrared region
论文作者
论文摘要
傅立叶变换(FT)光谱是一种用于研究固体,液相和气相样品的红外(IR)光学响应的多功能技术。在标准的FT-IR光谱仪中,穿过米歇尔森干涉仪的光束聚焦在带有冷凝器光学的样品上。该设计使我们能够检查相对较小的样品,但是聚焦红外光束的大量实体角使分析角度依赖性特征变得困难。在这里,我们设计并构建了与商业FT-IR光谱仪兼容的高精度角度分辨设置。我们的设置将聚焦的光束转换为具有角度分散的成ach梁直流光束,高达0.25 $^\ circ $。该设置还允许我们在零(正常发病率)上扫描〜8 $^\ Circ $的入射角。梁直径可以减少到约1毫米,这受HGCDTE检测器的灵敏度的限制。小英尺处的设备很容易安装在FT-IR样品室中。作为反射设置能力的证明,我们测量了二维光子晶体板的角度依赖性中红外反射率,并确定了动量空间中$γ$点附近的平面内分散关系。我们在理想设计的样品中观察到光子狄拉克锥的形成,即以$γ$为$γ$的线性分散体。我们的设备可用于表征具有强大面内各向异性的各种系统,包括光子晶体波导,等离子元素和分子晶体膜。
Fourier transform (FT) spectroscopy is a versatile technique for studying the infrared (IR) optical response of solid-, liquid-, and gas-phase samples. In standard FT-IR spectrometers, a light beam passing through a Michelson interferometer is focused onto a sample with condenser optics. This design enables us to examine relatively small samples, but the large solid angle of the focused infrared beam makes it difficult to analyze angle-dependent characteristics. Here we design and construct a high-precision angle-resolved reflection setup compatible with a commercial FT-IR spectrometer. Our setup converts the focused beam into an achromatically collimated beam with an angle dispersion as high as 0.25$^\circ$. The setup also permits us to scan the incident angle over ~8$^\circ$ across zero (normal incidence). The beam diameter can be reduced to ~1 mm, which is limited by the sensitivity of an HgCdTe detector. The small-footprint apparatus is easily installed in an FT-IR sample chamber. As a demonstration of the capability of our reflection setup we measure the angle-dependent mid-infrared reflectance of two-dimensional photonic crystal slabs and determine the in-plane dispersion relation in the vicinity of the $Γ$ point in momentum space. We observe the formation of photonic Dirac cones, i.e., linear dispersions with an accidental degeneracy at $Γ$, in an ideally designed sample. Our apparatus is useful for characterizing various systems that have a strong in-plane anisotropy, including photonic crystal waveguides, plasmonic metasurfaces, and molecular crystalline films.