论文标题
使用英特尔的Pohoiki Springs神经形态的最近邻居搜索
Neuromorphic Nearest-Neighbor Search Using Intel's Pohoiki Springs
论文作者
论文摘要
神经形态计算适用于从神经科学到发现计算技术创新的见解。在大脑中,数十亿个相互连接的神经元通过利用与常规计算系统的外国属性(例如时间上的尖峰代码)以及精确平行的处理单元相结合的记忆和计算来执行极低的能量水平的快速计算。在这里,我们展示了Pohoiki Springs神经形态系统,该系统由768个相互连接的Loihi芯片组成,可在硅中共同实施1亿个尖峰神经元。我们展示了可扩展的近似K-Nearest邻居(K-NN)算法,以搜索利用神经形态原理的大型数据库。与最新的基于CPU的最先进的实现相比,我们在包含超过100万个高维模式的几个标准数据集上进行评估时,我们实现了较高的延迟,建立时间和能源效率。此外,该系统支持在O(1)时间内在线索引数据库中添加新的数据点,与Brute Force常规K-NN实现不同。
Neuromorphic computing applies insights from neuroscience to uncover innovations in computing technology. In the brain, billions of interconnected neurons perform rapid computations at extremely low energy levels by leveraging properties that are foreign to conventional computing systems, such as temporal spiking codes and finely parallelized processing units integrating both memory and computation. Here, we showcase the Pohoiki Springs neuromorphic system, a mesh of 768 interconnected Loihi chips that collectively implement 100 million spiking neurons in silicon. We demonstrate a scalable approximate k-nearest neighbor (k-NN) algorithm for searching large databases that exploits neuromorphic principles. Compared to state-of-the-art conventional CPU-based implementations, we achieve superior latency, index build time, and energy efficiency when evaluated on several standard datasets containing over 1 million high-dimensional patterns. Further, the system supports adding new data points to the indexed database online in O(1) time unlike all but brute force conventional k-NN implementations.